

Digital signal processing systems of an X-ray microcalorimeter array for ground and space applications

T. Hagihara,

K. Mitsuda, N. Y. Yamasaki, Y. Takei, H. Odaka(ISAS/JAXA) M. Nomachi(Osaka University), T. Yuasa(University of Tokyo)

Overview

Microcalorimeter DAQ system adapted to high count rate on the ground and in the space

Overview

Microcalorimeter DAQ system adapted to high count rate on the ground and in the space

Overview

Microcalorimeter DAQ system adapted to high count rate on the ground and in the space

Microcalorimeter

X-ray

 \ge

Thermometer

Absorber

A spectrometer that measures photon energy as heat

X-ray application: Energy range : 0.1~10 keV Energy resolution : <10eV

Applications with high count rate

Microcalorimeter system has great application possibilities, if it can be adapted to high count rate.

In the space

with lager telescope, count rate becomes >100 counts/s/pixel

On the ground

for quick (1 min) inspection, total count rate becomes >10k counts/s

For now, Microcalorimeter system can deal with only few counts/s.

Microcalorimeter system for TEM (Transmission Electron Microscope)

PI: T. Hara (NIMS)

MEXT project "Development of elementary techniques for electron microscope in next generation"

Development team

Hara^{*} et al. (*NIMS, SIINT, Kyushu Univ., JOEL, ISAS/JAXA)

Development goal

Energy range: 0.5 – 10 keV

Energy resolution:

 $FWHM \le 10 eV$

Counting rate: ≥ 2k counts/s

200 counts/s/pixel

Optimal filtering

for higher energy resolution

Whole waveform contains X-ray information

-> Chi square fitting in frequency domain can maximize S/N ratio

$$\begin{split} D(f) &= A \times M(f) + N(f) \\ \text{event} & \text{deposited ideal pulse} & \text{ideal noise} \\ \chi^2 &\equiv \int \frac{|D(f) - A \times M(f)|^2}{|N(f)|^2} df \longrightarrow \frac{\partial \chi^2}{\partial A} = -2A \int D \frac{M^*}{|N|^2} df + 2 \int \frac{|M|^2}{|N|^2} df \\ \chi^2 &= \int \frac{\int D(f) \frac{M^*(f)}{|N(f)|^2} df}{\int \frac{|M|^2}{|N|^2} df} = \int D(f) T(f) df = \int \frac{D(t) T(t) dt}{\sqrt{1-1}} \\ \text{deposited energy} & \text{template, T} \\ \text{cross correlation between event and template in time domain} \end{split}$$

Function test

Performance evaluation Event triggering speed

Method:

Input ideal 500 events periodically at an event rate and measure acquired events in SDRAM

Requirements 800 events/s

event rate [events/s]	acquired events [events]	ratio
500	500/500	100%
1000	500/500	100%
2000	270/500	54%

at ~1 k events/s, all events are acquired -> OK

Performance evaluation

Event transfer and filtering speed

Method: transfer 1000 events in SDRAM to CPU and filter them

Requirements 800 events/s

event transfer speed via SpW = 32 events/s
filtering speed in CPU = 2k events/s

-> SpW speed will be improved using a new SpW IP core (Yuasa et al. this conference)

Summary

- We designed and assembled a high count-rate adapted digital processing system for micro-calorimeter array using SpaceWire.
- Whole system works as we intended and evaluation tests started.
- Event triggering and optimal filtering speed are sufficient for 800 events/s/4pixels(= 2k events/s).
- Data transfer speed via SpaceWire is not sufficient.
- New version SpaceWire interface will improve this speed.
- Test of the full TEM system with a 10 pixel array will start in January 2009.